Disciplina: Língua Portuguesa 0 Curtidas
Assinale a alternativa cujo excerto se afasta da lógica - UNIFESP 2016
Leia o trecho inicial de um artigo do livro Bilhões e bilhões do astrônomo e divulgador científico Carl Sagan (1934-1996) para responder a questão.
O tabuleiro de xadrez persa
Segundo o modo como ouvi pela primeira vez a história, aconteceu na Pérsia antiga. Mas podia ter sido na Índia ou até na China. De qualquer forma, aconteceu há muito tempo.
O grão-vizir, o principal conselheiro do rei, tinha in ventado um novo jogo. Era jogado com peças móveis sobre um tabuleiro quadrado que consistia em 64 quadrados vermelhos e pretos.
A peça mais importante era o rei. A segunda peça mais importante era o grão-vizir – exatamente o que se esperaria de um jogo inventado por um grão-vizir. O objetivo era capturar o rei inimigo e, por isso, o jogo era chamado, em persa, shahmat – shah para rei, mat para morto. Morte ao rei. Em russo, é ainda chamado shakhmat. Expressão que talvez transmita um remanescente sentimento revolucionário. Até em inglês, há um eco desse nome – o lance final é chamado checkmate (xeque-mate). O jogo, claro, é o xadrez. Ao longo do tempo, as peças, seus movimentos, as regras do jogo, tudo evoluiu. Por exemplo, já não existe um grão-vizir – que se metamorfoseou numa rainha, com poderes muito mais terríveis.
A razão de um rei se deliciar com a invenção de um jogo chamado “Morte ao rei” é um mistério. Mas reza a história que ele ficou tão encantado que mandou o grãovizir determinar sua própria recompensa por ter criado uma invenção tão magnífica. O grão-vizir tinha a resposta na ponta da língua: era um homem modesto, disse ao xá. Desejava apenas uma recompensa simples. Apontando as oito colunas e as oito filas de quadrados no tabuleiro que tinha inventado, pediu que lhe fosse dado um único grão de trigo no primeiro quadrado, o dobro dessa quantia no segundo, o dobro dessa quantia no terceiro e assim por diante, até que cada quadrado tivesse o seu complemento de trigo. Não, protestou o rei, era uma recompensa demasiado modesta para uma invenção tão importante.
Ofereceu joias, dançarinas, palácios. Mas o grão-vizir, com os olhos apropriadamente baixos, recusou todas as ofertas. Só desejava pequenos montes de trigo. Assim, admirando-se secretamente da humildade e comedimento de seu conselheiro, o rei consentiu.
No entanto, quando o mestre do Celeiro Real começou a contar os grãos, o rei se viu diante de uma surpresa desagradável.
O número de grãos começa bem pequeno: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024... mas quando se chega ao 64 . quadrado, o número se torna colossal, esmagador. Na realidade, o número é quase 18,5 quintilhões*. Talvez o grão-vizir estivesse fazendo uma dieta rica em fibras.
Quanto pesam 18,5 quintilhões de grãos de trigo? Se cada grão tivesse o tamanho de um milímetro, todos os grãos juntos pesariam cerca de 75 bilhões de toneladas métricas, o que é muito mais do que poderia ser armazenado nos celeiros do xá. Na verdade, esse número equivale a cerca de 150 anos da produção de trigo mundial no presente. O relato do que aconteceu a seguir não chegou até nós. Se o rei, inadimplente, culpando-se pela falta de atenção nos seus estudos de aritmética, entregou o reino ao vizir, ou se o último experimentou as aflições de um novo jogo chamado vizirmat, não temos o privilégio de saber.
* 1 quintilhão = 1 000 000 000 000 000 000 = 1018. Para se contar esse número a partir de 0 (um número por segundo, dia e noite), seriam necessários 32 bilhões de anos (mais tempo do que a idade do universo).
(Carl Sagan. Bilhões e bilhões, 2008. Adaptado.)
Assinale a alternativa cujo excerto se afasta da lógica exposta pela fábula do tabuleiro de xadrez persa.
-
“No presente, o tempo de duplicação da população mundial é de cerca de quarenta anos. A cada quarenta anos haverá o dobro de seres humanos. Como o clérigo inglês Thomas Malthus apontou em 1798, uma população que cresce exponencialmente – Malthus a descreveu como uma progressão geométrica – vai superar qualquer aumento concebível de alimentos.”
-
“No momento, em muitos países o número de pessoas com sintomas de aids está crescendo exponencial - mente. O tempo de duplicação é mais ou menos de um ano. Isto é, a cada ano há duas vezes mais casos de aids do quehavia no ano anterior. Essa doença já nos cobrou um tributo desastroso em mortes.”
-
“Vamos considerar primeiro o simples caso de uma bactéria que se reproduz dividindo-se em duas. Depois de certo tempo, cada uma das duas bactérias filhas também se divide. Desde que exista bastante alimento e não haja nenhum veneno no ambiente, a colônia de bactérias vai crescer exponencialmente.”
-
“A população da Terra na época de Jesus consistia talvez em 250 milhões de pessoas. Existem 93 milhões de milhas (150 milhões de quilômetros) da Terra até o Sol. Aproximadamente 40 milhões de pessoas foram mortas na Primeira Guerra Mundial; 60 milhões na Segunda Guerra Mundial. Há 31,7 milhões de segundos num ano (como é bastante fácil verificar).”
-
“Atualmente, há cerca de 6 bilhões de humanos. Em quarenta anos, se o tempo de duplicação continuar constante, haverá 12 bilhões; em oitenta anos, 24 bilhões; em cento e vinte anos, 48 bilhões... Mas poucos acreditam que a Terra possa suportar tanta gente.”
Solução
Faça login para continuar vendo as resoluções
Quer acessar mais resoluções? Faça login com sua conta para desbloquear nosso conteúdo!
Entrar